Pitchfork–Hopf bifurcations in 1D neural field models with transmission delays
نویسندگان
چکیده
Recently, local bifurcation theory for delayed neural fields was developed. In this paper, we show how symmetry arguments and residue calculus can be used to simplify the computation of the spectrum in special cases and the evaluation of the normal form coefficients, respectively. This is done hand in hand with an extensive study of two pitchfork–Hopf bifurcations for a 1D neural field model with ‘Wizard hat’ type connectivity. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Patterns of oscillation in a Ring of Identical Cells with Delayed Coupling
We investigate the behaviour of a neural network model consisting of three neurons with delayed self and nearest-neighbour connections. We give analytical results on the existence, stability and bifurcation of nontrivial equilibria of the system. We show the existence of codimension two bifurcation points involving both standard and D3-equivariant, Hopf and pitchfork bifurcation points. We use ...
متن کاملBifurcation structure of two coupled FHN neurons with delay.
This paper presents an investigation of the dynamics of two coupled non-identical FitzHugh-Nagumo neurons with delayed synaptic connection. We consider coupling strength and time delay as bifurcation parameters, and try to classify all possible dynamics which is fairly rich. The neural system exhibits a unique rest point or three ones for the different values of coupling strength by employing t...
متن کاملInterplay Between Synaptic Delays and Propagation Delays in Neural Field Equations
Neural field equations describe the activity of neural populations at a mesoscopic level. Although the early derivation of these equations introduced space dependent delays coming from the finite speed of signal propagation along axons, there has been few studies concerning their role in shaping the nonlinear dynamics of neural activity. This is mainly due to the lack of analytical tractable mo...
متن کاملOn the Hopf-Pitchfork bifurcation in the Chua's equation
We study some periodic and quasiperiodic behaviors exhibited by the Chua’s equation with a cubic nonlinearity, near a Hopf–pitchfork bifurcation. We classify the types of this bifurcation in the nondegenerate cases, and point out the presence of a degenerate Hopf–pitchfork bifurcation. In this degenerate situation, analytical and numerical study shows a diversity of bifurcations of periodic orb...
متن کاملA Remark on heteroclinic bifurcations Near Steady State/Pitchfork bifurcations
We consider a bifurcation that occurs in some two-dimensional vector fields, namely a codimension-one bifurcation in which there is simultaneously the creation of a pair of equilibria via a steady state bifurcation and the destruction of a large amplitude periodic orbit. We show that this phenomenon may occur in an unfolding of the saddle-node/pitchfork normal form equations, although not near ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015